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Abstract—In a multi-robot system, robots are typically re-
quired to collaborate over a communication network to achieve
objectives cooperatively. Due to the limited communication and
sensing capabilities on each robot, the cooperative objective must
be accomplished while ensuring that specified robots stay within
each other’s sensing and communication ranges and that the
overall network remains connected. In this paper, a dipolar
navigation function and corresponding time-varying continuous
controller is developed for repositioning and reorienting a group

of wheeled robots with nonholonomic constraints. Only local
sensing feedback information from neighbors is used to navigate
the robots and maintain network connectivity, which indicates
that communication is available when required for various tasks,
but communication is not required for navigation. Simulation
results demonstrate the performance of the developed approach.

I. INTRODUCTION

Coordination and collaboration are crucial to the per-

formance of multi-agent platforms in various applications.

Agents are required to communicate and coordinate their

movements with other agents to achieve collective tasks in

either a centralized or a decentralized manner. In a centralized

system, one algorithm determines and communicates the next

required movement for each agent. However, the centralized

approach is not practical in some applications due to the high

computation load and the potential for compromised commu-

nication with or demise/corruption of the central controller. In

a decentralized approach, each agent makes an independent

decision based on local information from neighbors, which

requires less computational effort and is more robust to the

completion of desired tasks compared with centralized control.

However, in decentralized control, challenges arising from

performing cooperative tasks for the global network using

local feedback can cause the network to partition. When the

network partitions, communication between groups of agents

can be permanently severed, leading to mission failure.

Results such as [1]–[9] are motivated to maintain the

network connectivity in the application of formation control,

flocking, consensus and other tasks. In [1], [5], [7], a potential

field-based centralized approach is developed to ensure the

connectivity of a group of agents which requires global

knowledge of the complete network structure to determine
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the control for each agent, while distributed control laws using

local information from neighbors are investigated to prevent

the partition of the underlying graph in the work of [3], [8]–

[11]. One common feature in most of the aforementioned work

is that only linear models of motion are taken into account,

i.e., the first order integrator. In this paper, a group of wheeled

mobile robots with nonholonomic constraints are considered.

Control design for the stabilization of a single robot with

nonholonomic constraints has been extensively studied in the

past decades [12], [13]. However, such controllers may not

be applicable for a networked multi-robot system with a

cooperative objective, e.g., maintaining network connectivity.

In this work, assuming a range sensor (e.g., camera) provides

local feedback of the relative trajectory of other robots within

a limited sensing region and a transceiver is used to broadcast

information to immediate neighbors on each robot, the objec-

tive is to reposition and reorient a group of wheeled robots

with nonholonomic constraints to a common setpoint with

a desired orientation while maintaining network connectivity

during the evolution.

The navigation function, a particular class of potential

functions developed in [14] and [15], is designed so that the

negative gradient field does not have local minima, and the

closed-loop navigation function techniques guarantee conver-

gence to the global minimum (i.e., the control objective).

The navigation function framework is widely used in the

application of multi-robot systems, such as [16] and [17], to

achieve cooperative objectives (e.g., formation control) under

the assumption that agents with first order integrator dynamics

can always communicate (i.e., the graph nodes are assumed

to remain connected). When considering nonholonomic nav-

igation to the destination with desired orientation, a dipolar

navigation function was proposed and a discontinuous time-

invariant controller was developed to navigate a single robot

in [18]. The work in [18] was then extended to a multi-robot

system with both holonomic and nonholonomic constraints

in [19] and extended to navigate a nonholonomic system

in three dimensions in [20]. However, only a time-invariant

discontinuous controller was developed in [18]–[20]. In [6],

when considering the maintenance of the network connec-

tivity, based on the work of [18], a discontinuous controller

was used to steer a multi-robot system with nonholonomic
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constraints to rendezvous at a common position. However,

each robot can only achieve the destination with arbitrary

orientation and has to reorient at the destination. Moreover, the

multi-robot system can only converge to a destination which

depends on the initial deployment in [6].

In this work, based on our previous work in [21], a decen-

tralized continuous time-varying controller, using only local

sensing feedback from its one-hop neighbors, is designed to

stabilize a group of wheeled mobile robots with nonholonomic

constraints at a specified common setpoint with a desired

orientation. A distinguishing feature of this work is that it also

considers a cooperative objective of maintaining the network

connectivity during network regulation. An advantageous fea-

ture of the developed decentralized controller is that, using

local sensing information, no inter-agent communication is

required (i.e., communication-free global decentralized group

behavior). That is, network connectivity is maintained so

that the radio communication is available when required for

various tasks, but communication is not required for navi-

gation. Using the navigation function framework, the multi-

robot system is guaranteed to maintain connectivity and be

stabilized at a common destination with a desired orientation

without being trapped by local minima from almost all initial

conditions, except for a set of measure zero. Moreover, the

result can be extended to other applications by replacing the

objective function in the navigation function to accommodate

different tasks, such as formation control, flocking, and other

applications.

II. PROBLEM FORMULATION

Consider a networked multi-robot system composed of N

Wheeled Mobile Robots (WMRs) operating in a workspace

F , where F is a bounded disk area with radius Rw, and ∂F
denotes the boundary of F . In the workspace F , each robot

moves according to the following nonholonomic kinematics:

q̇i =




cos θi 0
sin θi 0
0 1




[
vi (t)
ωi (t)

]
, i = 1, · · · , N (1)

where qi (t) �
[
pTi (t) θi (t)

]T
∈ R3 denotes the states

of robot i, with pi �
[
xi (t) yi (t)

]T
∈ R

2 denoting

the position of robot i, and θi ∈ (−π, π] denoting its

orientation with respect to the global coordinate frame in

the workspace F . In (1), vi (t) , ωi (t) ∈ R are the control

inputs, representing the linear and angular velocity of robot i,

respectively.

Assume that each robot has a limited communication and

sensing capability encoded by a disk area with radius Rc and

Rs respectively, and Rc ≥ Rs, which ensures that two robots

are able to communicate with each other as long as they can

sense each other. For simplicity and without loss of generality,

it is assumed that the sensing area coincides with the com-

munication area (i.e., Rc = Rs = R) in the following devel-

opment. Two moving robots can communicate with and sense

each other as long as they stay within a distance of R. Further,

all the robots are assumed to have equal actuation capabilities.

The interaction among the WMRs is modeled as an undirected

graph G(t) = (V, E(t)), where V = {1, · · · , N} denotes the

set of nodes, and E(t)= { (i, j) ∈ V × V| dij ≤ R} denotes a

set of time-varying edges. In graph G(t), each node i ∈ V
represents a robot located at a position pi, and an undirected

edge (i, j) ∈ E exists between node i and j in G(t) if their

relative distance dij � ‖pi − pj‖ ∈ R+ is less than R, which

indicates that node i and j are able to access the states (i.e.,

position and orientation) of each other through local sensing

and information exchange. The neighbor set of node i is

denoted as Ni = {j | (i, j) ∈ E}, which includes the nodes

that can be sensed and reached for communication. Since

the graph G (t) is undirected, i ∈ Nj ⇐⇒ j ∈ Ni for ∀i,
j ∈ V , i �= j. Due to the limited sensing and communication

capabilities, node i only knows the states of those nodes

within its sensing rage and can only communicate with nodes

within its communication range. Once node j moves out of

the sensing and communication zone of node i, node i will

no longer share information with node j directly, which may

lead to mission failure. Hence, to complete desired tasks,

maintaining connectivity of the underlying graph is necessary.

The main objectives in this work are to derive a set of

distributed controllers using only local information (i.e., the

states of the other robots within its sensing area) to lead the

group of WMRs to rendezvous at a common destination p∗

with a desired orientation θ∗i , i.e., q
∗
i =

[
(p∗)T θ∗i

]T
∀i

in the workspace F , while guaranteeing the underlying graph

G(t) remains connected during the system evolution, provided

the given initial graph is connected. To achieve these goals,

the following assumptions are required in the subsequent

development.

Assumption 1: The initial graph G is connected, and those

initial conditions do not coincide with unstable equilibria (i.e.,

saddle points).

Assumption 2: The destination p∗ and desired orientation

θ∗i is known for each robot and achievable, which indicates

that the destination will not meet any constraints, i.e., coincide

with the workspace boundary, or lead to the partition of the

underlying graph.

III. CONTROL DESIGN

A. Dipolar Navigation Function

Artificial potential field-based methods that use attractive

and repulsive potentials have been widely used to control

multi-robot systems. Due to the existence of local minima

when attractive and repulsive force are combined, robots can

be trapped by local minima and are not guaranteed to reach the

global minimum of the potential field. A navigation function is

a particular category of potential functions where the potential

field does not have local minima and the negative gradient

vector field of the potential field guarantees almost global

convergence to a desired destination, along with (guaranteed)

collision avoidance. In [14] and [15], a navigation function

ϕ is defined as a map from the workspace F to an interval

[0, 1], which is 1) smooth on F (at least a C2 function), 2)
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admissible on F (uniformly maximal on ∂F and constraint

boundary), 3) polar on F (qd is a unique minimum), and 4)

a Morse function (critical points of the navigation function

are non-degenerate). Property 2) establishes that the generated

trajectories are collision-free, since the resulting vector field is

maximum on the constraint and workspace boundary. Property

3) implies that all initial conditions are either brought to a

saddle point or to the unique minimum qd, while property

4) ensures that the initial conditions that bring the system

to saddle points are sets of measure zero, and all initial

conditions away from sets of measure zero are brought to

the unique minimum.

The navigation function introduced in [14] and [15] ensures

global convergence of the closed-loop system; however, the

approach is not suitable for nonholonomic systems, since the

feedback law generated from the gradient of the navigation

function can lead to undesired behavior. To overcome the

undesired behaviors, the original navigation function was

extended to a Dipolar Navigation Function in [18] and [22],

where the flow lines created in the potential field resemble

a dipole, so that the flow lines are all tangent to the desired

orientation at the origin and the vehicle can achieve the desired

orientation.

To maintain network connectivity and navigate the robots

to a common destination with a desired orientation using local

information, the dipolar navigation function in [18] and [22]

is modified for each node i as ϕi : F → [0, 1],

ϕi =
γi

(γαi +Hi · βi)
1/α
, (2)

where α ∈ R+ is a tuning parameter. The goal function γi (t) :
R
2 → R

+ in (2) encodes the control objective of achieving

the desired destination for node i, specified by the distance

from pi (t) ∈ R2 to the common destination p∗ ∈ R2, which

is designed as

γi = ‖pi (t)− p
∗‖2 . (3)

The factorHi (t) ∈ R+ in (2) creates the repulsive potential of

an artificial obstacle to align the trajectories at the destination

with the desired orientation. The repulsive potential factor is

designed as

Hi = εnh +
∏

j∈Ni

ηj , (4)

where εnh is a small positive constant, and ηi (t) ∈ R
+ is

designed as

ηi =
(
(pi − p

∗)T · ndi
)2
, (5)

where ndi =
[
cos (θ∗i ) sin (θ∗i )

]T
∈ R

2. To ensure

connectivity of the existing links between two nodes and

restrict the motion of each node in the specified workspace,

the constraint function βi : R
2N → [0, 1] in (2) is designed

as

βi = Bi0 ·
∏

j∈Ni

bij . (6)

Specifically, the constraint function in (6) is designed to

vanish whenever node i meets one of the constraints in the

workspace, (i.e., if node i touches the workspace boundary, or

departs from its neighbor nodes j ∈ Ni to a distance of R).

A small disk area with radius δ1 < R centered at node i is

denoted as a collision region. To prevent a potential collision

between node i and the workspace boundary ∂F , the function

Bi0 : R
2 → [0, 1] in (6) is designed as

Bi0 =

{
− 1

δ2
1

d2i0 +
2

δ1
di0, di0 < δ1

1, di0 ≥ δ1,
(7)

where di0 � Rw − ‖pi‖ ∈ R is the relative distance of node

i to the workspace boundary. To ensure connectivity of the

underlying graph, an escape region for each node is defined

as the outer ring of the sensing and communication area with

radius r, R−δ2 < r < R, where δ2 ∈ R+ is a predetermined

buffer distance. Each edge formed by node i and the adjacent

node j ∈ Ni in the escape region have the potential to lose

connectivity. In (6), bij � b(pi, pj) : R2 → [0, 1] ensures

connectivity of the network graph (i.e., guarantees that nodes

j ∈ Ni will never leave the sensing and communication zone

of node i if node j is initially connected to node i) and is

designed as

bij =






1 dij ≤ R− δ2
− 1

δ2
2

(dij + 2δ2 −R)2

+ 2

δ2
(dij + 2δ2 −R)

R− δ2 < dij < R

0 dij ≥ R.
(8)

Since γi and βi are guaranteed to not be zero simultane-

ously by Assumption 2, the navigation function candidate in

(2) achieves its minimum of 0 when γi = 0 and achieves

its maximum of 1 when βi = 0. Our previous work in

[10] proves that the original navigation function modified to

ensure connectivity, as designed in (8), is still a qualified

navigation function. It is also shown in [19] that the navigation

properties are not affected by the modification to a dipolar

navigation with the design of (4), as long as the workspace

is bounded, ηi in (5) can be bounded in the workspace, and

εnh is a small positive constant. As a result, the decentralized

navigation function ϕi proposed in (2) can be proven to be

a qualified navigation function. See [10] and [19] for further

details. From the properties of the navigation function, it is

known that, if ϕi is a qualified navigation function, almost

all initial positions (except for a set of measure zero points)

asymptotically approach the desired destination.

B. Control Development

The desired orientation for robot i, denoted by θdi (t) ,
is defined as a function of the negative gradient of the

decentralized navigation function in (2) as,

θdi � arctan 2
(
−∂ϕ

i

∂yi
, −∂ϕ

i

∂xi

)
, (9)

where arctan 2 (·) : R2 → R denotes the four quadrant inverse

tangent function, and θdi (t) is confined to the region of

(−π, π]. By defining θdi |p∗ = arctan 2 (0, 0) = θi |p∗ , θdi
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remains continuous along any approaching direction to the

goal position. Based on the definition of θdi in (9)

∇iϕi = −‖∇iϕi‖
[
cos (θdi) sin (θdi)

]T
, (10)

where ∇iϕi =
[

∂ϕ
i

∂xi

∂ϕ
i

∂yi

]T
denotes the partial derivative

of ϕi with respect to pi, and ‖∇iϕi‖ denotes the Euclidean

norm of ∇iϕi. The difference between the current orientation

and the desired orientation for robot i at each time instant is

defined as

θ̃i (t) = θi (t)− θdi (t) , (11)

where θdi (t) is generated from the decentralized navigation

function in (2) and (9). Since ϕi in (2) is a qualified navigation

function, the properties of a navigation function guarantees

that qdi (t)→ q∗i as t→∞. Hence, to achieve the navigation

control objective, θi (t) must track the desired orientation

θdi (t).
Based on the open-loop system in (1) and the subsequent

stability analysis, the controller for each robot (i.e., the linear

and angular velocity of robot i) is designed as

vi = kv ‖∇iϕi‖ cos θ̃i, (12)

ωi = −kwθ̃i + θ̇di, (13)

where kv, kw ∈ R+. The terms ∇iϕi and θ̇di in (12) and (13)

are determined from (2) and (9) as

∇iϕi =
α (Hi · βi)∇iγi − γi∇i (Hi · βi)

α(γαi +Hi · βi)
1

α
+1

, (14)

where ∇iγi and ∇i (Hi · βi) are bounded in the workspace

F from (3) and (6), and

θ̇di = kv cos(θ̃i)

[
sin (θdi)
− cos (θdi)

]T
∇2iϕi

[
cos (θi)
sin (θi)

]
, (15)

where ∇2iϕi denotes the Hessian matrix of ϕi with respect to

pi. Substituting (12) into (1), the closed-loop system for robot

i can be obtained as

ṗi =

[
ẋi
ẏi

]
= kv ‖∇iϕi‖ cos θ̃i

[
cos θi
sin θi

]
. (16)

After using the fact that
[
cos θi sin θi

]
∇iϕi = −‖∇iϕi‖ cos θ̃i, (17)

from (10), the closed-loop error systems in (17) can be

expressed as

ṗi = −kv∇iϕi. (18)

IV. CONNECTIVITY AND CONVERGENCE ANALYSIS

A. Connectivity Analysis

Theorem 1: Given an initially connected graph G composed

of nodes with kinematics given by (1), the controller in (12)

and (13) ensure the graph remains connected.

Proof: Consider node i located at a point p0 ∈ F
that causes

∏
j∈Ni

bij = 0, which will be true when either

only one node j is about to disconnect from node i or

when multiple nodes are about to disconnect with node i

simultaneously. From (6), βi = 0 , which indicates that the

navigation function designed in (2) achieves its maximum

value. From the negative gradient of ϕi in (18), no open set

of initial conditions can be attracted to the maxima of the

navigation function [15]. Therefore, the existing edge between

node i and node j ∈ Ni will be maintained for all time.

B. Convergence Analysis

Theorem 2: Given an initially connected graph G composed

of nodes with kinematics given by (1), the controller in (12)

and (13) ensure the robots converges to a common point with

a desired orientation, in the sense that ‖pi (t)− p∗‖ → 0 and∣∣∣θ̃i (t)
∣∣∣ → 0 as t → ∞ ∀i ∈ N , provided that the tuning

parameter α in (2) is sufficient large, α > Θ.

Proof: Consider a Lyapunov function candidate

V (P (t)) =
∑N
i=1 ϕi, where P (t) is the stacked position

states of all nodes, P (t)=
[
pT1 (t) · · · pTN (t)

]T
, and ϕi

is the associated navigation function for node i designed in

(2). The time derivative of V is

V̇ =
∑N

i=1
(∇iϕ1)

T
ṗi + · · ·+

∑N

i=1
(∇iϕN)

T
ṗi

=
∑N

i=1

∑N

j=1
ṗTi
(
∇iϕj

)
,

which can be further separated as

V̇ =
∑

i:∇iϕi=0

(
ṗTi (∇iϕi) +

∑
j �=i
ṗTi
(
∇iϕj

))
(19)

+
∑

i:∇iϕi �=0

(
ṗTi (∇iϕi) +

∑
j �=i
ṗTi
(
∇iϕj

))
,

where ∇iϕj ,∇iϕi ∈ R
2 denote the partial derivative of ϕj

and ϕi with respect to pi, respectively.

To show the objective of ‖pi − p∗‖ → 0 ∀i ∈ N , the set

of critical points, S = {pi | ∇iϕi = 0 for ∀i ∈ N} must be

shown to be the largest invariant set of the stacked closed-

loop system of (18). When all nodes are located at the critical

points (i.e., the position of node i satisfying ∇iϕi = 0) in

(19), V̇ = 0, since ṗi = 0 from (16). For node i not located

at the critical points (i.e., ∇iϕi �= 0), (19) can be rewritten as

V̇ =
∑

i:∇iϕi �=0

(
ṗTi (∇iϕi) +

∑
j �=i
ṗTi
(
∇iϕj

))
. (20)

To show that the set of critical points is the largest invariant

set, V̇ must be strictly negative whenever there exists at least

one node i such that ∇iϕi �= 0, for which it is sufficient to

show that

ṗTi (∇iϕi) +
∑

j �=i
ṗTi
(
∇iϕj

)
< 0. (21)

Substituting (14) and (18) into (21),yields

kv (∇iϕi)
T
(∇iϕi) + kv

∑
j �=i
(∇iϕi)

T (∇iϕj
)
> 0,

which can be simplified as

1

α2
c1 +

1

α
c2 + c3 > 0, (22)
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where

c1 = kvγi∇
T
i (Hiβi)

∑
j �=i
γj∇i

(
Hjβj

)
),

c2 = −kvHiβi∇
T
i γi

∑
j �=i
γj∇i

(
Hjβj

)
),

c3 = kv (∇iϕi)
T (∇iϕi) ,

by using the fact that ∇iγj = 0 from (3) and Hi, βi, γi, α

are positive from (3), (4) and (6). A sufficient condition for

the inequality in (22) to be satisfied is

−
1

α2
|c1| −

1

α
|c2| > −c3.

Hence, if α > Θ, where Θ = max

{√
|c1|
c3
,
|c2|
c3

}
, the system

converges to the set of critical points. Applying LaSalle’s

invariance principle, the trajectories of the system converge

to the largest invariant set contained in the set

S = {‖∇iϕi‖ = 0, ∀i ∈ V} . (23)

The set in (20) is formed whenever the potential functions

either reach the destination or a saddle point. Since ϕi in (2)

is a navigation function, the saddle points of ϕi are isolated

in [10]. Thus, the set of initial conditions that lead to saddle

points are sets of measure zero [23]. The largest invariant set

constrained is the set of destination [24]. Hence, ‖∇iϕi‖ = 0
indicates that ‖pi − p∗‖ → 0 for ∀i.

To show that
∣∣∣θ̃i
∣∣∣ → 0, we take the time derivative of

θ̃i (t) in (11) and use (1) to develop the open-loop orientation

tracking error system as
·

θ̃i = ωi− θ̇di. Using (13), the closed-

loop orientation tracking error is

·

θ̃i = −kwθ̃i, (24)

which has the exponentially decaying solution θ̃i (t) =
θ̃i (0) e−kwt.

Based on (3) and (8), it is clear that ∂ϕ
∂xi
, ∂ϕ
∂yi

∈ L∞ on

F ; hence, (12) can be used to conclude that vi (t) ∈ L∞.

Provided θ̇di (t) ∈ L∞ in (15) on F , (13) can be used to

show that ωi (t) ∈ L∞.

V. SIMULATION

A preliminary numerical simulation is performed in

this section to demonstrate the performance of the

controller developed in (12) and (13) in a scenario

where a group of four mobile robots with the kinematics

in (1) are navigated to the common destination[
(p∗)

T
, θ∗

]T
=
[
0 0 0

]T
. The four mobile robots are

deployed in a workspace of Rw = 5 m with an initially

connected condition of qT1 (0) =
[
−2 1.5 −1.131

]
,

qT2 (0) =
[
−2.25 0.7 −1.7279

]
, qT3 (0) =[

−2.5 −0.7 1.8850
]

and qT4 (0) =[
−2.25 −1.5 0.9425

]
. The limited communication

and sensing zone for each robot is assumed as R = 2 m and

δ1 = δ2 = 0.5 m. The tuning parameter α in (2) is selected

as α = 1.5, and the control gains kv and kw are adjusted to
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Fig. 1. The trajectory for each mobile robot.
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Fig. 2. Plot of linear velocity and angular velocity for each mobile robot.

kv = 1.1 and kw = 0.9. The control law in (12) and (13)

yields the simulation results shown in Fig. 1-4. Fig. 1 shows

the trajectory evolution for each robot, where the robots are

represented by dots, and the associated arrows indicate the

current orientation. The linear and angular velocity control

inputs for each robot are shown in Fig. 2. In Fig. 3, the plot of

position and orientation error for each mobile robot indicates

that each robot achieves the common destination with the

desired orientation. The evolution of inter-robot distance is

shown in Fig. 4, which implies that the connectivity of the

underlying graph is maintained, since the inter-robot distance

is less than the radius R = 2 m during the motion.

VI. CONCLUSION

Based on the dipolar navigation function formalism, a de-

centralized time-varying continuous controller is developed to

achieve network cooperative goals, that are navigating mobile

robots to a common destination with a desired orientation

and ensuring the network connectivity for all time, by using

only local sensing information from one-hop neighbors. A
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Fig. 3. Plot of position and orientation error for each mobile robot.
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Fig. 4. The evolution of inter-robot distance.

distinguishing feature of the developed decentralized approach

is that no inter-agent communication is required to complete

the network rendezvous objective, which results in radio si-

lence during the network regulation. Future efforts are focused

on enabling collision avoidance with obstacles in a dynamic

environment using local sensing information.
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